Public library services for Canadians with print disabilities
  • Mobile accessibility tips
    • Change contrast
      • AYellow on black selected
      • ABlack on yellow selected
      • AWhite on black selected
      • ABlack on white selected
      • ADefault colours selected
    • Change text size
      • Text size Small selected
      • Text size Medium selected
      • Text size Large selected
      • Text size Maximum selected
    • Change font
      • Arial selected
      • Verdana selected
      • Comic Sans MS selected
    • Change text spacing
      • Narrow selected
      • Medium selected
      • Wide selected
  • Register
  • Log in
  • Français
  • Home
  • Newspapers
  • Magazines
  • Recommended
  • For libraries
  • Help
  • Skip to content
      • Change contrast
        • AYellow on black selected
        • ABlack on yellow selected
        • AWhite on black selected
        • ABlack on white selected
        • ADefault colours selected
      • Change text size
        • Text size Small selected
        • Text size Medium selected
        • Text size Large selected
        • Text size Maximum selected
      • Change font
        • Arial selected
        • Verdana selected
        • Comic Sans MS selected
      • Change text spacing
        • Narrow selected
        • Medium selected
        • Wide selected
  • Accessibility tips
CELAPublic library services for Canadians with print disabilities

Centre for Equitable Library Access
Public library service for Canadians with print disabilities

  • Register
  • Log in
  • Français
  • Home
  • Newspapers
  • Magazines
  • Recommended
  • For libraries
  • Help
  • Advanced search
  • Browse by category
  • Search tips
Breadcrumb
  1. Home

A Simple Guide to Retrieval Augmented Generation

By Abhinav Kimothi

Computers and internet

Synthetic audio, Automated braille

Summary

Everything you need to know about Retrieval Augmented Generation in one human-friendly guide.Augmented Generation—or RAG—enhances an LLM&’s available data by adding context from an external knowledge base, so it can answer accurately about proprietary content, recent information, and even live… conversations. RAG is powerful, and with A Simple Guide to Retrieval Augmented Generation, it&’s also easy to understand and implement! In A Simple Guide to Retrieval Augmented Generation you&’ll learn: • The components of a RAG system • How to create a RAG knowledge base • The indexing and generation pipeline • Evaluating a RAG system • Advanced RAG strategies • RAG tools, technologies, and frameworks A Simple Guide to Retrieval Augmented Generation gives an easy, yet comprehensive, introduction to RAG for AI beginners. You&’ll go from basic RAG that uses indexing and generation pipelines, to modular RAG and multimodal data from images, spreadsheets, and more. About the Technology If you want to use a large language model to answer questions about your specific business, you&’re out of luck. The LLM probably knows nothing about it and may even make up a response. Retrieval Augmented Generation is an approach that solves this class of problems. The model first retrieves the most relevant pieces of information from your knowledge stores (search index, vector database, or a set of documents) and then generates its answer using the user&’s prompt and the retrieved material as context. This avoids hallucination and lets you decide what it says. About the Book A Simple Guide to Retrieval Augmented Generation is a plain-English guide to RAG. The book is easy to follow and packed with realistic Python code examples. It takes you concept-by-concept from your first steps with RAG to advanced approaches, exploring how tools like LangChain and Python libraries make RAG easy. And to make sure you really understand how RAG works, you&’ll build a complete system yourself—even if you&’re new to AI! What&’s Inside • RAG components and applications • Evaluating RAG systems • Tools and frameworks for implementing RAG About the Readers For data scientists, engineers, and technology managers—no prior LLM experience required. Examples use simple, well-annotated Python code. About the Author Abhinav Kimothi is a seasoned data and AI professional. He has spent over 15 years in consulting and leadership roles in data science, machine learning and AI, and currently works as a Director of Data Science at Sigmoid. Table of Contents Part 1 1 LLMs and the need for RAG 2 RAG systems and their design Part 2 3 Indexing pipeline: Creating a knowledge base for RAG 4 Generation pipeline: Generating contextual LLM responses 5 RAG evaluation: Accuracy, relevance, and faithfulness Part 3 6 Progression of RAG systems: Naïve, advanced, and modular RAG 7 Evolving RAGOps stack Part 4 8 Graph, multimodal, agentic, and other RAG variants 9 RAG development framework and further exploration

Title Details

ISBN 9781638357582
Publisher Manning
Copyright Date 2025
Book number 6638483
Report a problem with this book

A Simple Guide to Retrieval Augmented Generation

FAQ

Which devices can I use to read books and magazines from CELA?

Answer: CELA books and magazines work with many popular accessible reading devices and apps. Find out more on ourCompatible devices and formats page.

Go to Frequently Asked Questions page

About us

The Centre for Equitable Library Access, CELA, is an accessible library service, providing books and other materials to Canadians with print disabilities.

  • Learn more about CELA
  • Privacy
  • Terms of acceptable use
  • Member libraries

Follow us

Keep up with news from CELA!

  • Subscribe to our newsletters
  • Blog
  • Facebook
  • Twitter
  • Youtube

Suggestion Box

CELA welcomes all feedback and suggestions:

  • Join our Educator Advisory Group
  • Apply for our User Advisory Group
  • Suggest a title for the collection
  • Report a problem with a book

Contact Us

Email us at help@celalibrary.ca or call us at 1-855-655-2273 for support.

Go to contact page for full details

Copyright 2025 CELA. All rights reserved.